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Abstrad In this lener we shall propose a new H-Fock approach for the standard two- 
dimensional Hubbard model. Commensurate antiferromagnetic order exists only for half-filling. 
Upon doping. incommensurate spiral antiferromagnetic orders appear and electronic states build 
into the half-filling energy gap. Corresponding Fermi surfaces enclose weas proportional to the 
dopznt concenvations so thaI the Hall Concentrations d e  with lhe dopant concentrations. These 
mulct are consistent with recent transport, neutron-solttering and photoemission exprimen& 
OD the high-temperature cuprate superconductors. 

Hubbard models attract widespread attention since they are believed to be useful in 
describing the high-T, superconductivity of the cuprate materials. We are interested here 
only in the standard Hubbard (SH) model, i.e. the simplest one. It has the main properties of 
the other extended models, especially near the Fermi energy level. There have been many 
and various works on the SH model since Anderson first argued that the SH model could 
describe the high-T, superconductivity in cuprate materials [l]. At half-filling, the SH model 
has an instability towards antiferromagnetic order [2]. To carry out a perturbation calculation 
one needs a suitable mean-field solution as a good starting point. The work by Schneffer 
er nl was based on a half-filling mean-field solution of an antiferromagnetic order [2 ] .  
Subsequently, many works have aimed to understand the Hubbard model [4,5,6]. For the 
doped Hubbard model, one usually took the half-filling energy bands as one’s energy bands 
of doped systems in one’s further works. This was the so-called rigid approximation. But 
upon doping there is an instability towards some incommensurate magnetic orders instead 
of the commensurate AFM order [5].  The rigid approximation is not a good approach to 
work with in the doping systems. Reference [6] suggested spiral magnetic orders for the 
doped SH model. Their free energy is not derived from the SH model, but from a statistical 
physics argument. In this letter we shall propose a systematic and consistent Hartree-Fock 
theory for the SH model. 

Experimentally, it was found that there were incommensurate magnetic orders in 
the superconducting cuprates [6], electronic states were built into the energy gap of the 
corresponding undoped cuprates, and the Fermi surfaces of the superconducting cuprates 
have some peculiar properties [7, 91. These phenomena can be understood easily in the 
framework of our Hartree-Fock theory. 

We shall start with a general Hartree-Fock approximation and assume special forms for 
average spin and canier concentration. Then we diagonalize the resulting Hamiltonian by 
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a Bogoliubov transformation. Finally, we derive free energy and two constraint equations 
to determine the chemical potential p, average spin s, and modulation vector (Ql, Q2). 
We shall obtain the phase diagram by demanding that the free energy takes a minimum. 
After obtaining p. s and (Ql, Q2). we shall discuss the properties of electronic states. The 
half-filling ground state is an insulator of antiferromagnetic (m) orders. With doping, 
electronic states are built into the half-filling energy gap, the commensurate AFM order 
gives way to incommensurate spiral magnetic order, and the Fermi surface, locating mainly 
around the corner of the Brillouin zone. has a scale of dopant concentration instead of total 
electron (hole) concentration so that the Hall canier concentration scales with the dopant 
concentration. These properties are consistent with recent experimental data on the cuprate 
superconductors [6,  I ,  91. 

We start with the following SH Hamiltonian: 

where, as usual, cis t and ci0 are electronic operators, ni = E,C/~C~. is the number 
operator at site i ,  t is the hopping energy, and U is the on-site repulsive interaction energy, 
Our lattice is a two-dimensional square lattice. For OUT convenience we shall introduce 
in the Hamiltonian (1) a new term E Ei ni. in which E acts as OUT chemical potential. 
Besides this, we set such a unit that 21 = 1. In this unit U and T will be scaled by 2t.  
When making the Hartree-Fock approximation, usually one supposes that the spin operator 
Sf = c!o"q has the following average values: (S:) = (S;) = 0 and (S;) = 
But this works only in the half-filling system where Q = (x .  a). In doped systems, the 
ground state of Q = ( x , x )  is unstable. For the doped system with Q # (a,~), it is 
impossible to diagonalize analytically the HF Hamiltonian. In our approach, we suppose 
{nj) = p. (S;) = 0, {Sf) = and (S;) = ({Sf))'. ?his supposition means that 
(Si) = { ( S ; , S : , S f ) )  = (SCOSQ- R , , s s inQ '  Ri,O). When Q = (n,n), we obtain 
(Si) = (SCOSR . Ri, 0.0) so that spin orders are antiferromagnetic in the x direction. When 
Q = (0.0). spin orders are ferromagnetic in the x direction. Otherwise the spins' orders 
are spiral in the x y  plane. Our HF Hamiltonian takes the following form in k space: 

where 6 k  = E + Up12 - tzrk and rk = Z/Z(cos k, + cosk,). The HF Hamiltonian (2) can 
be diagonalized by the following Bogoliubov transformation: 

(3) 
where pi + U: = 1. Our diagonalized Hamiltonian reads 

Ckt = pkak + Vkbk ck+Qg = -vkak + Pkbr 

where = Ek+ f JV. 6,; is defined by Ek* = (E* f6k+Q)/2 .  The consistency 
of the average values (n i )  = p and {SF) = sei@R' requires that p and s satisfy the following 
constraint equations: 
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where ,3 = 1 / k s T .  Free energy per site is given by 

At zero temperature, T = 0 or ,3 = w, equations (5-7) reduce to 

The above function e ( x )  is defined by 

1 x 2 0  I 0 X < O ‘  
e ( x )  = 

All properties will be determined by the parameters s, E and Q. In our theoretical framework, 
s, E and Q are determined by minimizing the free energy f under the constraints ( 5 4 ,  or 
(8-9) in the limit of T = 0. 

At half-filling, Q = (x ,  JI) and E = - U / 2 .  s is determined by 

tanh(Oed2) (11) 

where en = ,/Uzsz + tz-. In the limit of T = 0, we obtain tanh(j?ek/2) = 1, and s is a 
function of the on-site coupling U divided by 2t. Figure 1 demonstrates the dependence 
of s on the ratio U/2t .  For large U / 2 t ,  we derive such an asymptotic behaviour of s as 
s = 1/2 - 4tZ/UZ. The corresponding free energy is given by f = -4tZ/U in leading 
order of 2 t l U .  For small U/2 t  we derive another s asymptotic behaviour 

2t 
s = exp(2.76 - x a ) .  

This small-U behaviour is accurate if U < 03. Our half-filling s and f values are the 
same as the results of Schrieffer et al [3] .  

In doped systems, we expect that Q is not equivalent to (n, n). But if 1 - p is small 
enough, it is still expected that the deviation of (JI, x )  - Q will be very small. Generally, 
we define Q = (QI, Q 2 ) .  Equations (5-7) are invariant under transformations Ql + -Ql 
andor QZ + -Qz so that we can confine QI and Q2 to the region of [0, x ]  in our following 
calculations. For our convenience, we define 6 = 1 - p and q = (41, qz) = (x ,  71) - Q. 
When 8 is small enough, we expect that q1 and q2 are small. As a result, we can analytically 
solve the constraints and minimize the free energy. We take SO of the half-filling as our 
average spin s of small S. The zero-temperature free energy is given by 

(12) f = fo + ;r [(qi -SIB)’+ (42 - S/B)’] 

where fo is independent of q1 and 42. and B = Us0 [y(-1) - y ( l ) z / y ( 3 ) ]  14. y ( K )  is 
defined by y ( K )  = (1/N) xk (1 + E ~ / U 2 s ~ ) - K ’ z .  Because (12) holds only when S is small 
enough, q1 = q 2  = 6 / B  holds only near 6 = 0. B is always positive for all U. B = 2 / x 2  
for very small U and B = 2.5/U3 for very large U. If U is very large, q, = 9 2  = 6 / B  

B 
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Figure 1. Dependence of average spin s on the on-site 
comlatioo swngtb U J Z t  The correlation is mmidered 
to be we& if U c 0.51. 
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Figure 2. U-p phase diagram. The phase boundaries 
%e not clearly defined except the paramagnetic edge, 
Q = (Ql, Q 2 )  changes continuously in all mas except 
the paramagnetic edge. 

will be very large as long as 8 # 0. This means that a phase transition to FM takes place at 
S - 0 for infinitely large U, being consistent with Nagaoka's theorem [lo]. In the lightly 
doped systems, ql and q2 are small so that the magnetic orders are a kind of deformed 
AFM order. For this kind of order the AFM structure is kept locally but the commensurate 
property is broken. It is expected experimentally that neutron-scattering peaks will become 
more broad and the single-peak structure will be replaced by a two-peak structure [6]. 
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Figure 3. Fermi surface (curve) of our Hortree-Fock theory. Its symmetry is so low that only 
ulc paity symmetry remains. The =ea it contaim is equivalent to the dopmt concentration 
multiplied by 4n2. 

Generally it needs digital calculations to minimize the free energy (10) under the 
constraints (8) and (9). Our zero-temperature p-U phase diagram is shown in figure 2. 
There are four areas in the phase diagram. But the boundaries are not clearly defined 
except the paramagnetic edge. In all phases here, spins orient in the xy plane, (Si) = 
(s cos Q . Ri , s sin Q . R,, 0). The commensurate AFM phase is limited rigorously to p = 1. 
Generally we have Q = (el, Q2). For the ferromagnetic (FM) phase, Ql = Qz = 0. But 
Ql is not rigorously equivalent to QZ near the boundary. The ( Q ,  Q) phase exists only 
when the dopant concentration 6 = 1 - p is small enough. We have Q j  n. Q2 near the 
(Q. Q ) / ( Q j ,  Qz) boundary. For very large U, the AFM/FM transition takes place at 6 - 0. 
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In the (QI ,  Qz) phase Qj - Q 2  increases with p decreasing for a given U .  In the complete 
phase diagram, s decreases as p decreases. If U > 10, it is expected that s = p / 2  in the 
FM area. 

As for the electronic structure, it is derived that 

ea.' = 6 + ~ p / 2  + q$+ * JUV + 6:- (13) 

where &+ = - sin(ql/2) cos ki - sin(qz/2) cos k; and @k- = - cos(ql/2) sin ki  - 
cos(q2/2) sink;. Here k' is connected with the original lattice momentum k by k' = k+Q/2. 
ea.' are invariant under transformation of k' + -k'. Since 

eb(x - k') = E + up/2  - &+ - ,/= = 2t  4- up - e"(k') 

the upper band and the lower band are symmetrical with respect to the band centre ~ + U p / 2 .  
This means that hole doping and electron doping are symmetrical to each other in our HF 
theory. It should be pointed out that this holeelectron symmetry results directly from 
the special properties based on the 2D square lattice. In our theory, (*ql, ztq2) and 
(+q2, +ql) lead to same free energy. But it is demanded in our HF approximation and 
diagonalization process that only one of the eight exist in the real system. This resembles 
ordered FM systems where a ground state of spin f has same energy as another ground 
state of spin J. does, but the spin takes only one direction. This is so-called spontaneous 
breaking of symmetry. It is reasonable for us to confine q1 and q2 to region 10, nl. If q1 
and q2 are non-zero, the upper band e, reaches its minimum at k' = (0,O) and the lower 
hand reaches its maximum at k' = (r, r). There is an energy gap between the two bands: 
g = 2Us - 2sin(q1/2) - 2sin(qz/2). If g > 0, the Hall coefficient is determined by one 
of the two bands so that its Hall concentration scales with the dopant concentration at low 
temprature. At half-filling the gap is given by go = 2Us0. There are two ways for doped 
carriers to reduce the gap: the doped carriers can reduce the average spin s; or the doped 
carriers make q1 and qz non-zero so that the two q terms appear in the gap expression. It 
is expected that the doped carriers reside in the the half-filling gap. 

At half-filling the two energy bands are defined by 

e",b = fJU2sZ + (cos kx +cos ky)2 

(2t = 1 in our units). The bandwidth is given by WO = JUzs2 + 16tZ - Us.  When U 
becomes large, the bandwidth is given by WO - 16t2/U. There is a great gap 2Us between 
the two bands so that the system is insulating, as it should be. If we took the half-filling 
bands as bands of the doped system as the rigid-band approximation did, we should obtain 
too small a band width for heavily doped systems of large U .  In contrast, in our theory 
the IargeU bandwidth is 8t even for intermediately doped system. Our result is reasonable 
because it is expected that the effect of the correlation U becomes weak in the heavily 
doped systems so that its bands ought to be determined mainly by the original t term of 
Hamiltonian (1). At half-filling the lower band is occupied fully and the upper band is 
empty so that the system is insulating. This is contrary to the tight-binding band result but 
is in agreement with the experimental fact of the undoped cuprates. In the lightly doped 
systems, the gaps between the two bands decrease but still exist. When holes are doped, 
the upper band is still empty and the holes enter into the lower band. When electrons are 
doped, the lower band remains full and the electrons enter the upper hand. This is different 
from conventional band-filling. In our theoretical framework, the doped carriers change the 
band structures when filling the bands. For the lightly electron-doped systems we expect 
its effective carriers are electron-type. For the lightly hole-doped systems its effective 
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carriers ought to be holetype. In both cases, effective carriers are proportional to the 
dopant concentrations. This is in agreement with the Hall-effect experiments on the doped 
superconducting cuprates [7,9]. If we make use of the usual energy-band-theoretical results 
for the doped cuprates, we should obtain wrong conclusions about the Hall concentrations. 

To make our discussion more quantitative, we take a set of typical parameters to show 
our results. We let Cl = 3 and S =.0.15. Minimizing the zero-temperature free energy, 
we obtain E = -0.8769, s = 0.3720, q = (1.934, 1.571), and f = -0.1896. The 
corresponding Fermi surface is shown in figure 3. The half-filling energy gap is given 
by go = 2Us0 = 2.482. For our present system we derive g = -0.8290. This is to 
say that no gap is present for p = O S .  Due to e'(O.0) = -0.0164. carriers have been 
doped partially into the upper band. Therefore, there are electrons in the upper band and 
holes in the lower band. The system consists of a nearly filled band and a nearly empty 
band. There are two types of carriers in the system. The Hall concentrations will deviate 
from the dopant-scaling behaviour in heavily doped systems such as the p = 0.85 system, 
being in agreement with the experiments of the superconducting cuprates. On the other 
hand, its Fermi surface become more complex. It consists of two parts: the major part 
around the corners of the Brillouin zone and the minor part around the centre, as shown in 
figure 3. When p = 0.95, we obtain E = -0.9465, s = 0.3998, q = (1.050, 1.000), and 
f = -0.08665. The corresponding gap is given by 0.4378. The minimum of the upper 
band is e$ = 0.6975 and maximurn of the lower band is e: = 0.2597. The centre of the 
two bands is at e, = 0.4786. In other words, the Fermi level is at -0.4786 away from 
the band centre. The distance between the band centre and the top of the lower band is 
0.2189, but there is a distance of 1.241 between the half-filling band centre and the top 
of the half-filling lower band. Its Hall concentration should exhibit a good dopant-scaling 
behaviour. It is obvious that the Fermi levels of 8 = 0.05 and 0.15 reside in the half-filling 
energy gap, being in agreement with the experimental results [7, 91. 

As for the shape of the Fermi surfaces, they are peculiar and very different from 
the tight-binding Fermi surfaces and the rigid-approximation Fermi surfaces. For lightly 
doped systems, q, zz q2 are small so that their Fermi surfaces are ellipses centred at 
k = (7r/2,7r/2) + (q11q2) or k' = (z,II). The Fermi surface in the 6 = 0.15 system is 
shown in figure 3. The tight-binding Fermi surface is shown, too, to compare with our 
theoretical result. It is obvious that the Fermi surface is asymmetrical, as explained above. 
This asymmetry has been observed in photoemission experiments on the cuprate materials 
[9]. Considering the symmetry of the two bands, our Fermi surface of 8 = 0.15, pocketing 
mainly around the centre of Brillouin wne and having a smaller part around the corners of 
Brillouin zone, is consistent with the experimental Fermi surface of YBaZCu306.9 191. 

In summary, we propose a Hartree-Fock theory of the standard Hubbard model. 
Commensurate antiferromagnetic order exists only at half-filling. Upon doping, incomm- 
ensurate magnetic orders appear and electronic states build into the half-filling gap. Fermi 
surfaces, locating mainly around the comers of Brillouin zone and having a minor part 
around the Brillouin-zone centre, contain areas proportional to the dopant concentration 
so that the Hall concentrations scale with the dopant concentrations. These results are in 
agreement with the recent transport, neutron-scattering, and photaelectron experiments on 
the high-temperature cuprates. 

This work is supported in part by The National Natural Science Foundation of China, the 
Chinese National Centre for R & D on Superconductivity, and grant No LWTZ1298 from 
the Chinese Academy of Sciences. 
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